Chapter 5
End-to-End Protocols

Dr. Tsai

Transport Level

« Underlying best-effort network
— drop messages
— re-orders messages
— delivers duplicate copies of a given message
— limits messages to some finite size
— delivers messages after an arbitrarily long delay

Dr. Tsai 2

Transport Level

» Transport level protocols: support communication between
the end application programs (the end-to-end protocol)

« Some properties are expected to provide for transport
protocols:

— Guarantees message delivery

— Delivers messages in the same order they are sent
— Delivers at most one copy of each message

— Supports arbitrarily large messages

— Supports synchronization between the sender and the
receiver

— Allows the receiver to apply flow control to the sender
— Supports multiple application processes on each host

Dr. Tsai 3

Simple Demultiplexer (UDP)

Dr. Tsai

Internet Architecture

 The Internet architecture i1s also called the TCP/IP architecture
« The transport protocols are

— UDP protocol
— TCP protocol
q q q ’ Application
TCP | UDP
IP
Network

Dr. Tsai 5

Simple Demultiplexer

» The simplest transport protocol extends the host-to-host
delivery service of the underlying network into a process-to-
process communication service

— Many processes running on any given host

— Alevel of demultiplexing is required for multiple
processes on each host to share the network

— The simplest transport protocol adds no other
functionality to the best-effort service provided by the
underlying network

* The Internet’s User Datagram Protocol (UDP) is an
example of such a transport protocol

« The only issue is the form of the address used to identify the
target process
Dr. Tsai 6

Simple Demultiplexer (UDP)

« The approach used by UDP is using an abstract locator
— Called a port or mailbox

— For a source process to send a message to a port, or for a
destination process to receive the message from a port

« The UDP port field is 16 bits long = up to 64 K possible
ports on a single host

Format for UDP header

Dr. Tsai

0

16

31

SrcPort

DstPort

Length

Checksum

Data

Port

Server host 140.114.2.3

Client host Service reqguest for

140.114.2.3:80 Web server
. (i.e., the Web server) |
(port 25)

Service request for
: (i.e., the Mail server) i P

(port 25)

Dr. Tsai 8

Simple Demultiplexer (UDP)

 How does the client learn the server’s port in the first place?

« A common approach is for the server to accept messages at a
well-known port, 1.e. some fixed port widely published

— Domain Name Server (DNS): port 53
— The mail server: port 25
— The Unix talk program: port 517
« A well-known port is the starting point for communication:

— The client and server use the well-known port to agree
on some other port for subsequent communications

« An alternative strategy is using only a well-known port for
the Port Mapper service to accept messages

— Aclient send a message to ask for the port it should use

Dr. Tsai 9

Simple Demultiplexer (UDP)

Which port?

[S
=
—

=
=
E

To the well-known port
(depends on the service)

A specific port no. (for this user)

\
== To the specific port
User

Wt

zr 27
2273

Which port?
[:.r : To the Port Mapper EI =
S A specific port no. (for this user) 5
\ \

To the specific port

I = 4
Server

10

Dr. Tsai

Simple Demultiplexer (UDP)

« Aportis implemented
by a message queue

« For an arrived message, Ports — T T T
the protocol appends it

[Application] {Application] [Application]
process process process

to the end of the queue

« \When a process wants
to receive a message,
one Is removed from the
front of the queue

 |If the queue iIs empty,
the process blocks until
a message becomes
available

Dr. Tsai

Queues

Packets
demultiplexed

Packets arrive

11

Reliable Byte Stream (TCP)

Dr. Tsai

Reliable Byte Stream (TCP)

« Areliable, connection-oriented, byte-stream service:
— Do not need to worry about missing or reordered data
» TCP: the Internet’s Transmission Control Protocol

— Guarantees the reliable, in-order delivery of a stream of
bytes

— A full-duplex protocol: each TCP connection supports a
pair of byte streams

— A flow-control mechanism: allows the receiver to limit
the amount of data that the sender can transmit at a given
time

— A demultiplexing mechanism

— A congestion-control mechanism

Dr. Tsai 13

End-to-End Issue (Variant RTT)

The sliding window algorithm in TCP runs over the Internet
— Which is quite different to point-to-point link

TCP needs an explicit connection establishment phase
— The two sides agree to exchange data with each other

— The two parties establish some shared state to enable the
sliding window algorithm to begin

TCP also has an explicit connection teardown phase
— For each host to know it is OK to free this state
Different connections may have widely different RTTs

— The TCP protocol must be able to support all conditions
with different round-trip times

— The timeout mechanism that triggers retransmissions
must be adaptive

Dr. Tsai 14

End-to-End Issue (Flow-control)

« The packets may be reordered as they cross the Internet

— Packets that are slightly out of order can be correctly
reordered by using the sequence number

— If a packet is delayed until IP’s time to live (T TL) field
expires, the packet will be discarded

» The amount of resources dedicated to any one TCP
connection is highly variable

— Each side must “learn” what resources (e.g. buffer space)
the other side is able to apply to the connection

— The flow-control mechanism

Dr. Tsai 15

End-to-End Issue (Network Congestion)

« The sending side of a TCP connection has no idea what links
will be traversed to reach the destination

— 100 Mbps fast Ethernet <> 1.5 Mbps T1 link <> ...
— This leads to the problem of network congestion

= 100 Mbps = 15Mbps = —
L Ethernet a—t T1 link = _ _____
Source Router Router Destination
ya—
Other node

Dr. Tsai 16

Segment Format

Dr. Tsai

Segment

» TCP connection supports byte streams flowing in both
direction

— The source host buffers enough bytes from the sending
process to fill a reasonably sized packet

— The packet is called segment
Application process Application process
]]

1 Write 1 Read
: bytes . bytes
. .
TCP TCP
Send buffer Receive buffer

Segment| |Segment| e e ¢ | Segment T

Transmit segments

Dr. Tsai 18

Segment Format

e SrcPort and DstPort:
— The source and destination ports
« Acknowledgment, SequenceNum, and AdvertisedWindow:

— All involved in TCP’s sliding window algorithm
0 4 10 16 31
SrcPort DstPort
SequenceNum
Acknowledgment
HdrLen 0 Flags AdvertisedWindow
Checksum UrgPtr
Options (variable)
Data

TCP header
format

Dr. Tsai 19

Segment Format

« SequenceNum:;

— Contains the sequence number for the first byte of data
carried in the segment

— Each byte of data has a sequence number
« Acknowledgment and AdvertisedWindow:

— Carry information about the flow of data going in the
other direction

Data (SequenceNum)
e

Sender —Receiver
\

Acknowledgment +
AdvertisedWindow

Dr. Tsai 20

Segment Format

HdrLen field:

— The length of the header in 32-bit words
The 6-bit Flags field:

— Used to relay control information between TCP peers
UrgPtr field:

— Indicates where the nonurgent data contained in this
segment begins

— Urgent data is contained in the front of a segment
Checksum field:
— Error detection

Dr. Tsai 21

Segment Format

» The possible flags include SYN, FIN, RESET, PUSH,
URG and ACK (6 bits = 6 flags)

— SYN: 1s used when establishing a TCP connection
— FIN: i1s used when terminating a TCP connection

— RESET: 1s used when the receiver has become confused,
and so wants to abort the connection

— PUSH: is used when the sending process invokes the
push operation to efficiently flush the buffer of unsent
bytes

— URG: is used when this segment contains urgent data
— ACK: is set when the Acknowledgment field is valid

Dr. Tsai 22

Connection Establishment and
Termination

Dr. Tsai

Connection Establishment and Termination

« ATCP connection begins with a client (caller) doing an
active open to a server (callee)

« The two sides engage in an exchange of messages to
establish the connection

 Only after this connection establishment phase is over, the
two sides can begin sending data

» The algorithm used by TCP to establish and terminate a
connection is called a three-way handshake

— Involves the exchange of three messages between the
client and the server

Dr. Tsai 24

Connection Establishment and Termination

The client sends a segment to the server stating the initial
segquence number

— Flags = SYN, SequenceNum = x
The server responds with a single segment
— To acknowledge the client’s sequence number

» Flags = ACK, Ack = x+1 (next sequence number
expected is x+1)

— To state its own beginning sequence number
» Flags = SYN, SequenceNum =y

The client responds with a segment that acknowledges the
server’s sequence number

— Flags = ACK, Ack = y+1

Dr. Tsai 25

Connection Establishment and Termination

(Client) (Server)

Dr. Tsai 26

State Transition Diagram

Passive open

SYN/SYN + ACK
SYN/SYN + ACK

CLOSED

A

Y

Close

LISTEN

Send/SYN

SYN_RCVD [« SYN_SENT
ACKj ﬁ + ACK/ACK
Close/FIN ESTABLISHE
Y Close/FIN _ FIN/ACK
FIN_ WAIT 1 CLOSE_WAIT
K
ACK \ Close/FIN
Y w}
FIN_ WAIT 2 CLOSING LAST_ACK
ACK Timeout after_ two ACK
Y segment lifetimes v
FIN/ACK
= TIME_WAIT = CLOSED

Active open/SYN

27

Sliding Window Algorithm

Sliding Window Algorithm

TCP sliding window algorithm:
— It guarantees the reliable delivery of data
— It ensures that data is delivered in order

— It enforces flow control between the sender and the
receiver

Rather than having a fixed-size sliding window, the receiver
advertises a window size to the sender

— Based on the amount of memory allocated to the
connection for the purpose of buffering data

— Using the AdvertisedWindow field in the TCP header

The sender is limited to having no more than a value of
AdvertisedWindow bytes of unacknowledged data

Dr. Tsai 29

Sliding Window Algorithm (Sending Side)

« TCP on the sending side maintains a send buffer used to
store

— The data that has been sent but not yet acknowledged

— The data that has been written by the sending
application, but not transmitted

TCP send buffer

(_Sending application »

TCP

LastByteWritten

$!ri

LastByteAcked LastByteSent

Not transmitted

Dr. Tsai 30

Sliding Window Algorithm (Recelving Side)

« TCP on the receiving side maintains a receive buffer used to
hold

— The data that arrives out of order

— The data that is in the correct order, but that the
application process has not yet had the chance to read

TCP receive buffer
(_Receiving application
TCP
N EoEs
1 A

NextByteExpected LastByteRcvd

Dr. Tsai 31

Sliding Window Algorithm

 In the sending side, three pointers are maintained into the
send buffer: LastByteAcked, LastByteSent, and
LastByteWritten

— LastByteAcked < LastByteSent
— LastByteSent < LastByteWritten

* In the receiving side, three pointers are maintained into the
receive buffer: LastByteRead, NextByteExpected, and
LastByteRcvd

— LastByteRead < NextByteExpected
— NextByteExpected < LastByteRcvd + 1
« “="holds when there is no out of order byte

Dr. Tsai 32

Flow Control (Recelve Buffer)

» The buffer sizes are finite: MaxSendBuffer, MaxRcvBuffer
« To avoid overflowing the receive buffer
— LastByteRcvd — LastByteRead < MaxRcvBuffer

« The receiver advertises a window size representing the
amount of free space remaining in its buffer

— AdvertiseWindow = MaxRcvBuffer —
((NextByteExpected — 1) — LastByteRead)

Il\/lachvBuffer
__—AdvertiseWindow

.
LastByteRead - Out of order
) ~ HEER

t 1t
NextByteExpected LastByteRcvd

Dr. Tsai 33

Flow Control (Recelve Buffer)

« |If the local process is reading data just as fast as it arrives
— The advertised window stays open
« AdvertiseWindow = MaxRcvBuffer
« |If the receiving process falls behind
— The advertised window grows smaller until it goes to 0

Dr. Tsai 34

Flow Control (Recelve Buffer)

« TCP on the sending side must ensure that
— LastByteSent-LastByteAcked < AdvertiseWindow

« To avoid overflowing the receive buffer, the sender computes
an effective window that limits how much data it can send:

— EffectiveWindow = AdvertiseWindow —
(LastByteSent — LastByteAcked)

AdvertiseWindow F

EffectiveWindow |‘—' Not transmitted
¢ H — &
LastByteAcked LastByteSent

Dr. Tsai 35

Flow Control (Recelve Buffer)

« EffectiveWindow must be greater than O before the source
can send more data

 |f a segment arrives acknowledging x bytes and the receiving
process was not reading any data

— The receive buffer does not free any buffer space
— The advertise window Is x bytes smaller
— The sender can increase LastByteAcked by x

— The sender would be able to free buffer space, but not to
send any more data

Dr. Tsai 36

Flow Control (Send Buffer)

« The sending side must also make sure that the local
application process does not overflow the send buffer

— LastByteWritten—LastByteAcked <
MaxSendBuffer

« |If the sending process ties to write y bytes to TCP, but

— LastByteWritten — LastByteAcked +y >
MaxSendBuffer

— Then TCP blocks the sending process

I\/’axSendBuffer

) {__ LastByteWritten

g H ¢
LastByteAcked LastByteSent

Dr. Tsai 37

Flow Control (Send Buffer)

» Aslow receiving process ultimately stops a fast sending
process

— The receive buffer fills up

= The advertise window shrinks to 0

= The sending side cannot transmit any data
= The send buffer fills up

— TCP blocks the sending process

« TCP is designed to make the receive side as simple as
possible

— It simply responses to segments from the sender

Dr. Tsai 38

Flow Control

« How does the sending side know that the advertised
window is no longer 0?
« TCP always sends a segment in response to a received
segment
— Contains the latest values for the Acknowledge and
AdvertiseWindow fields

« Whenever the receiving side advertises a window size of 0
— The sending side persists in sending a probe segment
with 1 byte of data

— Each probe segment triggers a response containing the
current advertised window
— Eventually, a response reports a nonzero advertised

window
Dr. Tsali 39

Protection Against Wrap Around

« 32-bit SequenceNum

widl) . |
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622 Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds

Keeping t

he Pipe Full

e 16-bit AdvertisedWindow

Bandwidth |
T1 (1.5 Mbps)

Ethernet (10 Mbps)

T3 (45 Mbps)

FDDI (100 Mbps)

STS-3 (155 Mbps)

Delay x Bandwidth Product
18KB

122KB

549KB

1.2MB

1.8MB

7.4MB

STS-12 (622 Mbps)
STS-24(1.2Ghps)

41

Triggering Transmission

Dr. Tsai

Triggering Transmission

» TCP has three mechanisms to trigger the transmission of a
segment

— It sends a segment as soon as it has collected MSS
(maximum segment size) bytes from the sending process

« MSS is generally set to the size of the largest segment
TCP can send without causing IP fragmentation

— It sends a segment when the sending process has asked it
to do so

« TCP supports a PUSH operation and the sending
process invokes it to flush the buffer of unsent bytes

— It sends a segment when a timer fires

 The resulting segment contains all bytes that are
currently buffered for transmission

Dr. Tsai 43

Triggering Transmission

« Data segment: full containers; ACKs: empty containers;

— MSS-sized segments: large container; 1-byte segments:
small container

 Silly window syndrome: If the sender aggressively fills an
empty container as soon as it arrives

— Any small container introduced into the system remains
In the system indefinitely

— It never coalesces with adjacent containers to create
larger containers

I I I Full containers < 500d
EEEN)

= Bad
Sender . |_| |_ R

Receiver

[] Empty containers

Dr. Tsai 44

Triggering Transmission (Window Size)

 Triggering transmission is applied to keep the receiver from
Introducing a small container:

— After advertising a zero window, the receiver must wait
for space equal to an MSS before it advertises an open
window

« Some mechanisms are also introduced to coalesce small
containers

— The receiver can do this by delaying ACKs — sending
one combined ACK rather than multiple smaller ones

 Reply a large window size

Dr. Tsai 45

Triggering Transmission (Sender)

 |f there is data to send but the window is open less than MSS
— It waits some amount of time before sending the data:
* Introduce a timer
— It transmits when the timer expires
« Aself-clocking solution: Nagle’s algorithm

— If TCP has any data in flight, the sender will eventually
receive an ACK — treated like a timer firing

Data in flight
B _
\—
Sender ‘NJ; |:| |:| ACK__ Receiver

Timer firing

Dr. Tsai 46

Triggering Transmission (Sender)

* Nagle’s algorithm:

— It’s always OK to send a full segment if the window
allows

— It’s OK to send a small amount of data if there are
currently no segments in transit

— If there i1s anything in flight, the sender must wait for an
ACK before transmitting the next segment

Dr. Tsai 47

Adaptive Retransmission

Dr. Tsai

Adaptive Retransmission

« TCP retransmits each segment if an ACK is not received in
a certain period of time

« TCP sets this timeout as a function of

— The RTT it expects between the two ends of the
connection

 Since the RTTs are various with time, TCP uses an adaptive
retransmission mechanism

— To keep a running average of the RTT
— Then compute the timeout as a function of this RTT

Dr. Tsai 49

Adaptive Retransmission

« Every time TCP sends a data segment, it records the time

« When an ACK for that segment arrives, TCP reads the time
again and then takes the difference as a SampleRTT

« TCP then computes an EstimatedRTT as a weighted
average between the previous estimate and this new sample

— EstimatedRTT = a x EstimatedRTT + (1-a) x
SampleRTT

— o Is selected to smooth the EstimatedRTT
« TCP then uses EstimatedRTT to compute the timeout:
— TimeOut = 2 x EstimatedRTT

Dr. Tsai 50

Adaptive Retransmission

» The setting of o

— A small a tracks changes in the RTT but is heavily
Influenced by temporary fluctuations

— Alarge o Is more stable but Is not quick enough to adapt
to real change

— It recommended a setting of o between 0.8 and 0.9

* Problem: An ACK does not really acknowledge a
transmission

— It actually acknowledges the receipt of data

Dr. Tsai 51

Adaptive Retransmission

« \Whenever a segment is retransmitted and then an ACK
arrives at the sender

— It 1s impossible to determine if this ACK should be
associated with the first or the second transmission

SampleRTT too large SampleRTT too small
Sender Receiver Sender Receiver

Orig;
B Iinaj ¢
SUN T
SSIOn

SampleRTT

SampleRTT
[

Dr. Tsai 52

Adaptive Retransmission

« Karn/Partridge algorithm:

— Whenever TCP retransmits a segment, it stops taking
samples of the RTT

— It only measures SampleRTT for segments that have
been sent only once

— Each time TCP retransmits, it sets the next timeout to be
twice the last timeout (rather than the last EstimatedRTT)

« TCP use exponential backoff
* Problem: If the variation among samples is small
— Then the EstimatedRTT can be better trusted
« |If the variation among samples is large
— Then the timeout value should not be too tightly coupled
to the EstimatedRTT

Dr. Tsai 53

Adaptive Retransmission

« Jacobson/Karels algorithm:
— The sender measures a new SampleRTT as before
— The timeout is calculated as follows:
Difference = SampleRTT — EstimatedRTT
EstimatedRTT = EstimatedRTT + (8 x Difference)
Deviation = Deviation + §(|Difference| — Deviation)
— O Is a fraction between 0 and 1
— TCP then computes the timeout value as follows:
TimeOut = u x EstimatedRTT + ¢ x Deviation
— nistypically setto 1 and ¢ is setto 4
« When the variance is small, TimeOut is close to EstimatedRTT
» When the variance is large, Deviation will dominate TimeOut

Dr. Tsai 54

Transport for Real-Time Application
(RTP)

Dr. Tsai

Real-time Transport Protocol (RTP)

« RTP contains a considerable amount of functionality that is
specific to multimedia applications

— Runs on top of one of the transport-layer protocols UDP
— Provides common end-to-end functions to a number of

applications
« Multimedia applications are sometimes divided into two
Classes: Application
— Conferencing applications RTP
— Streaming applications UDP
« RTP can run over many lower- IP
protocols, but commonly Subnet
UDP Protocol stack for multimedia

applications using RTP

Dr. Tsai 56

Requirements for RTP

« The most basic requirement for a general-purpose multimedia
protocol is that it allow similar applications to interoperate
with each other

— Two independently implemented applications to
communicate with each other

« Coding schemes agreement: A sender tell a receiver the
used coding scheme, and negotiate until a scheme is
Identified

— There are only quite a few different coding schemes

y_ 4 L TN A
%_\ Encoder Negotiation Decoder SPeaker
M (Coding _[(]

icrophone™ (Coding
/\AW Scheme) 1§ B] | Scheme) /\M

Dr. Tsai 57

Requirements for RTP

« Timing: To enable the recipient of a data stream to determine
the timing relationship among the received data

— Real-time applications: need to place received data into a
playback buffer to smooth out the jitter introduced into
the data stream during transmission

« Some sort of timestamping of the data is necessary for
the receiver to play it back at the appropriate time

= Packet
E arrival
= Packﬁt I—/
o generation
, Playback
c Network™ Buffer t Y
0 delay
]
N Playback Time

Time
Dr. Tsai 58

Requirements for RTP

» Synchronization: To synchronize multiple media in a
conference

— For example to synchronize an audio and video stream
that are originating from the same sender

 Indication of packet loss: An application with tight latency
bounds generally cannot use a reliable transport like TCP

— Retransmission of data to correct for loss would probably
cause the packet to arrive too late to be useful

— The application must be able to deal with missing packets

— For example, a video application using MPEG encoding
will need to take different actions when a packet is lost

» Depending on whether the packet came from an |
frame, a B frame, or a P frame

Dr. Tsai 59

Requirements for RTP

« Congestion-avoidance: multimedia applications generally
do not run over TCP

— Miss out on the congestion-avoidance features of TCP
— Multimedia applications should respond to congestion

» For example, by changing the parameters of the coding
algorithm to reduce the bandwidth consumed

— The receiver needs to notify the sender that losses are
occurring

Dr. Tsai 60

Requirements for RTP

* Frame boundary indication:
— Notify a video application that a certain set of packets
correspond to a single frame

— Mark the beginning of a “talkspurt,” which is a
collection of sounds or words followed by silence

* |dentify the silences between talkspurts
» Use them as opportunities to move the playback point

» Slight shortening or lengthening of the spaces
between words are not noticeable to users

AA/\/\/\/\/\A/\AA/\ AA/\/\A/\AA/\AA/\ > Time
W WY WYY

Talkspurt Talkspurt

Dr. Tsai 61

Requirements for RTP

 ldentifying senders: Should be a way more user-friendly
than an IP address

— Such as display strings such as Joe User
(user@domain.com)

 Efficient use of bandwidth: Do not introduce a lot of extra
bits (long header) that need to be sent with every packet

— Long packets would mean high latency due to
packetization

— Audio packets tend to be small

 Bad bandwidth efficiency is obtained if long header is
used

Dr. Tsai 62

RTP Detalls

« The RTP standard actually defines a pair of protocols

— Real-time Transport Protocol (RTP): is used for the
exchange of multimedia data

— Real-time Transport Control Protocol (RTCP): is used
to periodically send control information associated with
a certain data flow

« \When running over UDP, the RTP data stream and the
associated RTCP control stream use consecutive transport-
layer ports

— The RTP data uses an even port number

— The RTCP control information uses the next higher (odd)
port number

Dr. Tsai 63

RTP Control Protocol

« This control stream provides three main functions:

— To feedback data on the performance of the application
and the network

— To correlate and synchronize different media streams
coming from the same sender

— To convey the identity of a sender for display on a user
Interface

» The performance data is useful for rate-adaptive applications

— Use a more aggressive compression scheme to reduce
congestion

— Send a higher-quality stream for little congestion

Dr. Tsai 64

