
Dr. Tsai

Chapter 5

End-to-End Protocols

Dr. Tsai 2

Transport Level

• Underlying best-effort network

– drop messages

– re-orders messages

– delivers duplicate copies of a given message

– limits messages to some finite size

– delivers messages after an arbitrarily long delay

Dr. Tsai 3

Transport Level

• Transport level protocols: support communication between

the end application programs (the end-to-end protocol)

• Some properties are expected to provide for transport

protocols:

– Guarantees message delivery

– Delivers messages in the same order they are sent

– Delivers at most one copy of each message

– Supports arbitrarily large messages

– Supports synchronization between the sender and the

receiver

– Allows the receiver to apply flow control to the sender

– Supports multiple application processes on each host

Dr. Tsai

Simple Demultiplexer (UDP)

Dr. Tsai 5

Internet Architecture

• The Internet architecture is also called the TCP/IP architecture

• The transport protocols are

– UDP protocol

– TCP protocol

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

TCP UDP

IP

Network

Application

Dr. Tsai 6

Simple Demultiplexer

• The simplest transport protocol extends the host-to-host

delivery service of the underlying network into a process-to-

process communication service

– Many processes running on any given host

– A level of demultiplexing is required for multiple

processes on each host to share the network

– The simplest transport protocol adds no other

functionality to the best-effort service provided by the

underlying network

• The Internet’s User Datagram Protocol (UDP) is an

example of such a transport protocol

• The only issue is the form of the address used to identify the

target process

Dr. Tsai 7

Simple Demultiplexer (UDP)

• The approach used by UDP is using an abstract locator

– Called a port or mailbox

– For a source process to send a message to a port, or for a

destination process to receive the message from a port

• The UDP port field is 16 bits long  up to 64 K possible

ports on a single host

SrcPort DstPort

ChecksumLength

Data

0 16 31

Format for UDP header

Dr. Tsai 8

Port

Web server

(port 80)

Client host

Server host 140.114.2.3

Mail server

(port 25)

Service request for

140.114.2.3:80

(i.e., the Web server)

Web server

(port 80)

Mail server

(port 25)

Service request for

140.114.2.3:25

(i.e., the Mail server)

OS

OS

Client

Client

Dr. Tsai 9

Simple Demultiplexer (UDP)

• How does the client learn the server’s port in the first place?

• A common approach is for the server to accept messages at a

well-known port, i.e. some fixed port widely published

– Domain Name Server (DNS): port 53

– The mail server: port 25

– The Unix talk program: port 517

• A well-known port is the starting point for communication:

– The client and server use the well-known port to agree

on some other port for subsequent communications

• An alternative strategy is using only a well-known port for

the Port Mapper service to accept messages

– A client send a message to ask for the port it should use

Dr. Tsai 10

Simple Demultiplexer (UDP)

Server

Which port?To the well-known port
(depends on the service)

User

A specific port no. (for this user)

To the specific port

Server

To the Port Mapper

User

A specific port no. (for this user)

To the specific port

Which port?

Dr. Tsai 11

Simple Demultiplexer (UDP)

• A port is implemented

by a message queue

• For an arrived message,

the protocol appends it

to the end of the queue

• When a process wants

to receive a message,

one is removed from the

front of the queue

• If the queue is empty,

the process blocks until

a message becomes

available

Application
process

Application
process

Application
process

UDP

Packets arrive

Ports

Queues

Packets
demultiplexed

Dr. Tsai

Reliable Byte Stream (TCP)

Dr. Tsai 13

Reliable Byte Stream (TCP)

• A reliable, connection-oriented, byte-stream service:

– Do not need to worry about missing or reordered data

• TCP: the Internet’s Transmission Control Protocol

– Guarantees the reliable, in-order delivery of a stream of

bytes

– A full-duplex protocol: each TCP connection supports a

pair of byte streams

– A flow-control mechanism: allows the receiver to limit

the amount of data that the sender can transmit at a given

time

– A demultiplexing mechanism

– A congestion-control mechanism

Dr. Tsai 14

End-to-End Issue (Variant RTT)

• The sliding window algorithm in TCP runs over the Internet

– Which is quite different to point-to-point link

• TCP needs an explicit connection establishment phase

– The two sides agree to exchange data with each other

– The two parties establish some shared state to enable the

sliding window algorithm to begin

• TCP also has an explicit connection teardown phase

– For each host to know it is OK to free this state

• Different connections may have widely different RTTs

– The TCP protocol must be able to support all conditions

with different round-trip times

– The timeout mechanism that triggers retransmissions

must be adaptive

Dr. Tsai 15

End-to-End Issue (Flow-control)

• The packets may be reordered as they cross the Internet

– Packets that are slightly out of order can be correctly

reordered by using the sequence number

– If a packet is delayed until IP’s time to live (TTL) field

expires, the packet will be discarded

• The amount of resources dedicated to any one TCP

connection is highly variable

– Each side must “learn” what resources (e.g. buffer space)

the other side is able to apply to the connection

 The flow-control mechanism

Dr. Tsai 16

End-to-End Issue (Network Congestion)

• The sending side of a TCP connection has no idea what links

will be traversed to reach the destination

– 100 Mbps fast Ethernet  1.5 Mbps T1 link  …

– This leads to the problem of network congestion

1.5 Mbps
T1 link

100 Mbps
Ethernet

Source Router Router Destination

Other node

Dr. Tsai

Segment Format

Dr. Tsai 18

Segment

• TCP connection supports byte streams flowing in both

direction

– The source host buffers enough bytes from the sending

process to fill a reasonably sized packet

– The packet is called segment

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

  

Dr. Tsai 19

Segment Format

• SrcPort and DstPort:

– The source and destination ports

• Acknowledgment, SequenceNum, and AdvertisedWindow:

– All involved in TCP’s sliding window algorithm

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP header

format

Dr. Tsai 20

Segment Format

• SequenceNum:

– Contains the sequence number for the first byte of data

carried in the segment

– Each byte of data has a sequence number

• Acknowledgment and AdvertisedWindow:

– Carry information about the flow of data going in the

other direction

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Dr. Tsai 21

Segment Format

• HdrLen field:

– The length of the header in 32-bit words

• The 6-bit Flags field:

– Used to relay control information between TCP peers

• UrgPtr field:

– Indicates where the nonurgent data contained in this

segment begins

– Urgent data is contained in the front of a segment

• Checksum field:

– Error detection

Dr. Tsai 22

Segment Format

• The possible flags include SYN, FIN, RESET, PUSH,

URG and ACK (6 bits  6 flags)

– SYN: is used when establishing a TCP connection

– FIN: is used when terminating a TCP connection

– RESET: is used when the receiver has become confused,

and so wants to abort the connection

– PUSH: is used when the sending process invokes the

push operation to efficiently flush the buffer of unsent

bytes

– URG: is used when this segment contains urgent data

– ACK: is set when the Acknowledgment field is valid

Dr. Tsai

Connection Establishment and

Termination

Dr. Tsai 24

Connection Establishment and Termination

• A TCP connection begins with a client (caller) doing an

active open to a server (callee)

• The two sides engage in an exchange of messages to

establish the connection

• Only after this connection establishment phase is over, the

two sides can begin sending data

• The algorithm used by TCP to establish and terminate a

connection is called a three-way handshake

– Involves the exchange of three messages between the

client and the server

Dr. Tsai 25

Connection Establishment and Termination

• The client sends a segment to the server stating the initial

sequence number

– Flags = SYN, SequenceNum = x

• The server responds with a single segment

– To acknowledge the client’s sequence number

• Flags = ACK, Ack = x+1 (next sequence number

expected is x+1)

– To state its own beginning sequence number

• Flags = SYN, SequenceNum = y

• The client responds with a segment that acknowledges the

server’s sequence number

– Flags = ACK, Ack = y+1

Dr. Tsai 26

Connection Establishment and Termination

(Client) (Server)

27

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACK

Timeout after two

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

Dr. Tsai

Sliding Window Algorithm

Dr. Tsai 29

Sliding Window Algorithm

• TCP sliding window algorithm:

– It guarantees the reliable delivery of data

– It ensures that data is delivered in order

– It enforces flow control between the sender and the

receiver

• Rather than having a fixed-size sliding window, the receiver

advertises a window size to the sender

– Based on the amount of memory allocated to the

connection for the purpose of buffering data

– Using the AdvertisedWindow field in the TCP header

• The sender is limited to having no more than a value of

AdvertisedWindow bytes of unacknowledged data

Dr. Tsai 30

Sliding Window Algorithm (Sending Side)

• TCP on the sending side maintains a send buffer used to

store

– The data that has been sent but not yet acknowledged

– The data that has been written by the sending

application, but not transmitted

LastByteWritten

TCP

LastByteSentLastByteAcked

Sending application

TCP send buffer

Not transmitted

Dr. Tsai 31

Sliding Window Algorithm (Receiving Side)

• TCP on the receiving side maintains a receive buffer used to

hold

– The data that arrives out of order

– The data that is in the correct order, but that the

application process has not yet had the chance to read

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

TCP receive buffer

Out of order

Dr. Tsai 32

Sliding Window Algorithm

• In the sending side, three pointers are maintained into the

send buffer: LastByteAcked, LastByteSent, and

LastByteWritten

– LastByteAcked  LastByteSent

– LastByteSent  LastByteWritten

• In the receiving side, three pointers are maintained into the

receive buffer: LastByteRead, NextByteExpected, and

LastByteRcvd

– LastByteRead < NextByteExpected

– NextByteExpected  LastByteRcvd + 1

• “=” holds when there is no out of order byte

Dr. Tsai 33

Flow Control (Receive Buffer)

• The buffer sizes are finite: MaxSendBuffer, MaxRcvBuffer

• To avoid overflowing the receive buffer

– LastByteRcvd – LastByteRead  MaxRcvBuffer

• The receiver advertises a window size representing the

amount of free space remaining in its buffer

– AdvertiseWindow = MaxRcvBuffer –

((NextByteExpected – 1) – LastByteRead)

LastByteRead

LastByteRcvdNextByteExpected

Out of order

MaxRcvBuffer

AdvertiseWindow

Dr. Tsai 34

Flow Control (Receive Buffer)

• If the local process is reading data just as fast as it arrives

– The advertised window stays open

• AdvertiseWindow = MaxRcvBuffer

• If the receiving process falls behind

– The advertised window grows smaller until it goes to 0

Dr. Tsai 35

Flow Control (Receive Buffer)

• TCP on the sending side must ensure that

– LastByteSent–LastByteAcked  AdvertiseWindow

• To avoid overflowing the receive buffer, the sender computes

an effective window that limits how much data it can send:

– EffectiveWindow = AdvertiseWindow –

(LastByteSent – LastByteAcked)

LastByteSentLastByteAcked

Not transmittedEffectiveWindow

AdvertiseWindow

Dr. Tsai 36

Flow Control (Receive Buffer)

• EffectiveWindow must be greater than 0 before the source

can send more data

• If a segment arrives acknowledging x bytes and the receiving

process was not reading any data

– The receive buffer does not free any buffer space

– The advertise window is x bytes smaller

– The sender can increase LastByteAcked by x

– The sender would be able to free buffer space, but not to

send any more data

Dr. Tsai 37

Flow Control (Send Buffer)

• The sending side must also make sure that the local

application process does not overflow the send buffer

– LastByteWritten–LastByteAcked 

MaxSendBuffer

• If the sending process ties to write y bytes to TCP, but

– LastByteWritten – LastByteAcked + y >

MaxSendBuffer

– Then TCP blocks the sending process

LastByteWritten

LastByteSentLastByteAcked

MaxSendBuffer

Dr. Tsai 38

Flow Control (Send Buffer)

• A slow receiving process ultimately stops a fast sending

process

– The receive buffer fills up

 The advertise window shrinks to 0

 The sending side cannot transmit any data

 The send buffer fills up

 TCP blocks the sending process

• TCP is designed to make the receive side as simple as

possible

– It simply responses to segments from the sender

Dr. Tsai 39

Flow Control

• How does the sending side know that the advertised

window is no longer 0?

• TCP always sends a segment in response to a received

segment

– Contains the latest values for the Acknowledge and

AdvertiseWindow fields

• Whenever the receiving side advertises a window size of 0

– The sending side persists in sending a probe segment

with 1 byte of data

– Each probe segment triggers a response containing the

current advertised window

– Eventually, a response reports a nonzero advertised

window

40

Protection Against Wrap Around

• 32-bit SequenceNum

Bandwidth Time Until Wrap Around

T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622 Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds

41

Keeping the Pipe Full

• 16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product

T1 (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45 Mbps) 549KB

FDDI (100 Mbps) 1.2MB

STS-3 (155 Mbps) 1.8MB

STS-12 (622 Mbps) 7.4MB

STS-24 (1.2 Gbps) 14.8MB

Dr. Tsai

Triggering Transmission

Dr. Tsai 43

Triggering Transmission

• TCP has three mechanisms to trigger the transmission of a

segment

– It sends a segment as soon as it has collected MSS

(maximum segment size) bytes from the sending process

• MSS is generally set to the size of the largest segment

TCP can send without causing IP fragmentation

– It sends a segment when the sending process has asked it

to do so

• TCP supports a PUSH operation and the sending

process invokes it to flush the buffer of unsent bytes

– It sends a segment when a timer fires

• The resulting segment contains all bytes that are

currently buffered for transmission

Dr. Tsai 44

Triggering Transmission

• Data segment: full containers; ACKs: empty containers;

– MSS-sized segments: large container; 1-byte segments:

small container

• Silly window syndrome: If the sender aggressively fills an

empty container as soon as it arrives

– Any small container introduced into the system remains

in the system indefinitely

– It never coalesces with adjacent containers to create

larger containers

Sender Receiver

Full containers

Empty containers

Good

Bad

Dr. Tsai 45

Triggering Transmission (Window Size)

• Triggering transmission is applied to keep the receiver from

introducing a small container:

– After advertising a zero window, the receiver must wait

for space equal to an MSS before it advertises an open

window

• Some mechanisms are also introduced to coalesce small

containers

– The receiver can do this by delaying ACKs  sending

one combined ACK rather than multiple smaller ones

• Reply a large window size

Dr. Tsai 46

Triggering Transmission (Sender)

• If there is data to send but the window is open less than MSS

– It waits some amount of time before sending the data:

• Introduce a timer

– It transmits when the timer expires

• A self-clocking solution: Nagle’s algorithm

– If TCP has any data in flight, the sender will eventually

receive an ACK – treated like a timer firing

Sender Receiver

Data in flight

ACK

Timer firing

Dr. Tsai 47

Triggering Transmission (Sender)

• Nagle’s algorithm:

– It’s always OK to send a full segment if the window

allows

– It’s OK to send a small amount of data if there are

currently no segments in transit

– If there is anything in flight, the sender must wait for an

ACK before transmitting the next segment

Dr. Tsai

Adaptive Retransmission

Dr. Tsai 49

Adaptive Retransmission

• TCP retransmits each segment if an ACK is not received in

a certain period of time

• TCP sets this timeout as a function of

– The RTT it expects between the two ends of the

connection

• Since the RTTs are various with time, TCP uses an adaptive

retransmission mechanism

– To keep a running average of the RTT

– Then compute the timeout as a function of this RTT

Dr. Tsai 50

Adaptive Retransmission

• Every time TCP sends a data segment, it records the time

• When an ACK for that segment arrives, TCP reads the time

again and then takes the difference as a SampleRTT

• TCP then computes an EstimatedRTT as a weighted

average between the previous estimate and this new sample

– EstimatedRTT =   EstimatedRTT + (1–) 

SampleRTT

–  is selected to smooth the EstimatedRTT

• TCP then uses EstimatedRTT to compute the timeout:

– TimeOut = 2  EstimatedRTT

Dr. Tsai 51

Adaptive Retransmission

• The setting of :

– A small  tracks changes in the RTT but is heavily

influenced by temporary fluctuations

– A large  is more stable but is not quick enough to adapt

to real change

– It recommended a setting of  between 0.8 and 0.9

• Problem: An ACK does not really acknowledge a

transmission

– It actually acknowledges the receipt of data

Dr. Tsai 52

Adaptive Retransmission

• Whenever a segment is retransmitted and then an ACK

arrives at the sender

– It is impossible to determine if this ACK should be

associated with the first or the second transmission

Sender Receiver Sender Receiver

SampleRTT too smallSampleRTT too large

Dr. Tsai 53

Adaptive Retransmission

• Karn/Partridge algorithm:

– Whenever TCP retransmits a segment, it stops taking

samples of the RTT

– It only measures SampleRTT for segments that have

been sent only once

– Each time TCP retransmits, it sets the next timeout to be

twice the last timeout (rather than the last EstimatedRTT)

• TCP use exponential backoff

• Problem: If the variation among samples is small

– Then the EstimatedRTT can be better trusted

• If the variation among samples is large

– Then the timeout value should not be too tightly coupled

to the EstimatedRTT

Dr. Tsai 54

Adaptive Retransmission

• Jacobson/Karels algorithm:

– The sender measures a new SampleRTT as before

– The timeout is calculated as follows:

Difference = SampleRTT – EstimatedRTT

EstimatedRTT = EstimatedRTT + (  Difference)

Deviation = Deviation + (|Difference| – Deviation)

–  is a fraction between 0 and 1

– TCP then computes the timeout value as follows:

TimeOut =   EstimatedRTT +   Deviation

–  is typically set to 1 and  is set to 4

• When the variance is small, TimeOut is close to EstimatedRTT

• When the variance is large, Deviation will dominate TimeOut

Dr. Tsai

Transport for Real-Time Application

(RTP)

Dr. Tsai 56

Real-time Transport Protocol (RTP)

• RTP contains a considerable amount of functionality that is

specific to multimedia applications

– Runs on top of one of the transport-layer protocols UDP

– Provides common end-to-end functions to a number of

applications

• Multimedia applications are sometimes divided into two

classes:

– Conferencing applications

– Streaming applications

• RTP can run over many lower- layer

protocols, but commonly runs over

UDP

Application

RTP

UDP

IP

Subnet

Protocol stack for multimedia
applications using RTP

Dr. Tsai 57

Requirements for RTP

• The most basic requirement for a general-purpose multimedia

protocol is that it allow similar applications to interoperate

with each other

– Two independently implemented applications to

communicate with each other

• Coding schemes agreement: A sender tell a receiver the

used coding scheme, and negotiate until a scheme is

identified

– There are only quite a few different coding schemes

Microphone

Speaker
Encoder

(Coding
Scheme)

Decoder

(Coding
Scheme)

Negotiation

Dr. Tsai 58

Requirements for RTP

• Timing: To enable the recipient of a data stream to determine

the timing relationship among the received data

– Real-time applications: need to place received data into a

playback buffer to smooth out the jitter introduced into

the data stream during transmission

• Some sort of timestamping of the data is necessary for

the receiver to play it back at the appropriate time

S
e

q
u

e
n

c
e

 n
u

m
b

e
r

Packet
generation

Network
delay

Buffer time
Playback

Time

Packet
arrival

Playback Time

Dr. Tsai 59

Requirements for RTP

• Synchronization: To synchronize multiple media in a

conference

– For example to synchronize an audio and video stream

that are originating from the same sender

• Indication of packet loss: An application with tight latency

bounds generally cannot use a reliable transport like TCP

– Retransmission of data to correct for loss would probably

cause the packet to arrive too late to be useful

– The application must be able to deal with missing packets

– For example, a video application using MPEG encoding

will need to take different actions when a packet is lost

• Depending on whether the packet came from an I

frame, a B frame, or a P frame

Dr. Tsai 60

Requirements for RTP

• Congestion-avoidance: multimedia applications generally

do not run over TCP

– Miss out on the congestion-avoidance features of TCP

– Multimedia applications should respond to congestion

• For example, by changing the parameters of the coding

algorithm to reduce the bandwidth consumed

– The receiver needs to notify the sender that losses are

occurring

Dr. Tsai 61

Requirements for RTP

• Frame boundary indication:

– Notify a video application that a certain set of packets

correspond to a single frame

– Mark the beginning of a “talkspurt,” which is a

collection of sounds or words followed by silence

• Identify the silences between talkspurts

• Use them as opportunities to move the playback point

• Slight shortening or lengthening of the spaces

between words are not noticeable to users

Time

Talkspurt Talkspurt

Dr. Tsai 62

Requirements for RTP

• Identifying senders: Should be a way more user-friendly

than an IP address

– Such as display strings such as Joe User

(user@domain.com)

• Efficient use of bandwidth: Do not introduce a lot of extra

bits (long header) that need to be sent with every packet

– Long packets would mean high latency due to

packetization

– Audio packets tend to be small

• Bad bandwidth efficiency is obtained if long header is

used

Dr. Tsai 63

RTP Details

• The RTP standard actually defines a pair of protocols

– Real-time Transport Protocol (RTP): is used for the

exchange of multimedia data

– Real-time Transport Control Protocol (RTCP): is used

to periodically send control information associated with

a certain data flow

• When running over UDP, the RTP data stream and the

associated RTCP control stream use consecutive transport-

layer ports

– The RTP data uses an even port number

– The RTCP control information uses the next higher (odd)

port number

Dr. Tsai 64

RTP Control Protocol

• This control stream provides three main functions:

– To feedback data on the performance of the application

and the network

– To correlate and synchronize different media streams

coming from the same sender

– To convey the identity of a sender for display on a user

interface

• The performance data is useful for rate-adaptive applications

– Use a more aggressive compression scheme to reduce

congestion

– Send a higher-quality stream for little congestion

